Rethinking Biased Estimation

Rethinking Biased Estimation  (English, Paperback, Eldar Yonina C.)

इस प्रोडक्ट पर राय देने वाले पहले व्यक्ति बने
ख़ास कीमत
₹9,790
14,018
30% off
i
उपलब्ध ऑफ़र
  • Special Price15% की अतिरिक्त छूट पाएं (कैशबैक/कूपन सहित कीमत)
    T&C
  • Bank OfferFlipkart Axis बैंक क्रेडिट कार्ड पर 5% अपलिमिटेड कैशबैक
    T&C
  • Bank Offer10% instant discount on SBI Credit Card EMI Transactions, up to ₹1,500 on orders of ₹5,000 and above
    T&C
  • Bank Offer10% off up to ₹1,000 on all Axis Bank Credit Card (incl. migrated ones) EMI Txns of ₹7,490 and above
    T&C
  • Delivery
    Check
    Enter pincode
      डिलीवरी23 मई, शुक्रवार|Free
      ?
    जानकारी देखें
    लेखक
    Read More
    Highlights
    • Language: English
    • Binding: Paperback
    • Publisher: now publishers Inc
    • Genre: Technology & Engineering
    • ISBN: 9781601981301, 1601981309
    • Edition: 2008
    • Pages: 160
    Seller
    AtlanticPublishers
    3.8
    • 7 Days Replacement Policy
      ?
  • अन्य विक्रेता देखें
  • जानकारी
    Rethinking Biased Estimation discusses methods to improve the accuracy of unbiased estimators used in many signal processing problems. At the heart of the proposed methodology is the use of the mean-squared error (MSE) as the performance criteria. One of the prime goals of statistical estimation theory is the development of performance bounds when estimating parameters of interest in a given model, as well as constructing estimators that achieve these limits. When the parameters to be estimated are deterministic, a popular approach is to bound the MSE achievable within the class of unbiased estimators. Although it is well-known that lower MSE can be obtained by allowing for a bias, in applications it is typically unclear how to choose an appropriate bias. The book introduces MSE bounds that are lower than the unbiased Cramer-Rao bound (CRB) for all values of the unknowns. It then presents a general framework for constructing biased estimators with smaller MSE than the standard maximum-likelihood (ML) approach, regardless of the true unknown values. Specializing the results to the linear Gaussian model, it derives a class of estimators that dominate least-squares in terms of MSE. It also introduces methods for choosing regularization parameters in penalized ML estimators that outperform standard techniques such as cross validation.
    Read More
    Specifications
    Book Details
    Imprint
    • now publishers Inc
    Publication Year
    • 2008
    Series & Set Details
    Series Name
    • Foundations and Trends in Signal Processing
    Dimensions
    Width
    • 9 mm
    Height
    • 234 mm
    Length
    • 156 mm
    Weight
    • 235 gr
    Safe and Secure Payments.Easy returns.100% Authentic products.
    आप यह भी खरीदना चाहेंगे
    जीवनियां और आत्मकथाएं
    कम से कम 50% की छूट
    Shop Now
    लाइफस्टाइल की अन्य किताबें
    कम से कम 50% की छूट
    Shop Now
    अर्थशास्त्र की किताबें
    कम से कम 50% की छूट
    Shop Now
    जनरल फिक्शन की किताबें
    कम से कम 50% की छूट
    Shop Now
    Back to top